Home
Class 12
MATHS
" 11.If "y=e^(tan^(-1)x)," show that "(x...

" 11.If "y=e^(tan^(-1)x)," show that "(x^(2)+1)(d^(2)y)/(dx^(2))+(2x-1)(dy)/(dx)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)x, show that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y = e^(m tan ^(-1) x) , show that (1+x^(2)) (d^(2)y)/(dx^(2)) +(2x-m) (dy)/(dx) = 0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If logy=tan^(-1)x , prove that : (1+x^(2)) (d^(2)y)/(dx^(2))+(2x-1)(dy)/(dx)=0

If y=tan^(-1)x , then show that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y= e^(m tan^ (-1) x) show that (1+x^2) (d^2 y)/(dx^2) + (2x-m) (dy/dx) = 0

If y=e^(mtan^(-1)x) , prove that : (1+x^(2))(d^(2)y)/(dx^(2))+(2x-m)dy/dx=0 .

IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0 .

If x=tan((1)/(a)log y), show that (1-x^(2))(d^(2)y)/(dx^(2))+(2x-a)(dy)/(dx)=0