Home
Class 12
MATHS
Which of the following function is a per...

Which of the following function is a periodic function? (i) f(x)=sin{x}; {.}= fractional part of x (ii) f(x)=sin[x] ;[.]=greatest integer function (iii) f(x)=log[x] ;[.]=greatest integer function (iv) f(x)= `sinx/x ; x!=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest integer function f(x)=[x] is -

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

The function f(x) = [x] where [x] is the greatest integer function is continous at

Find range of the function f(x)=log_(2)[3x-[x+[x+[x]]]] (where [.] is greatest integer function)

Find range of the function f(x)=log_(2)[3x-[x+[x+[x]]]] (where [.] is greatest integer function)

Find the period of the following functions if they are periodic: f(x)=4sin x;g(x)=sin4x+5;h(x)=cos x+x-[x] ,where [.] denotes the greatest integer function

f(x)=log(x-[x]), which [,] denotes the greatest integer function.