Home
Class 12
MATHS
If 2^(f(x))=(2+x)/(2-x), x in (-2, 2) an...

If `2^(f(x))=(2+x)/(2-x), x in (-2, 2) and f(x)= lambda f((8x)/(4+x^2))` then value of `prime lambda prime` will be

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(f(x)) = (2+x)/(2-x), x in (-2, 2) and f(x) = lambda f((8x)/(4+ x^(2))) then value 'lambda' will be

If f^(prime)(x)=8\ x^3-2x ,\ \ f(2)=8, find f(x) .

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

f(x)={[x]+[-x], where x!=2 and lambda where If f(x) is continuous at x=2 then,the value of lambda will be

If f^(prime)(x)=3x^2-2/(x^3) and f(1)=0 , find f(x) .

f(x)={([x]+[x], "when" x ne 2),(lambda, "when" x = 2):} If f(x) is continuous at x = 2, the value of lambda will be

If range of f(x)=(2x^(2)+lambda)/(x^(2)+2) is [2,6] then (lambda)/(4)=

If f(x) = [x] + [-x], x ne 2 = lambda, x = 2 , then f is continuous at x = 2, provided lambda is equal to :