Home
Class 12
MATHS
[" WFT I "72" on the "],[" 1."z=-1-t sqr...

[" WFT I "72" on the "],[" 1."z=-1-t sqrt(3)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Principal argument of z=-1-i sqrt(3)

The modulus of z = 1+sqrt(3)i is

If z_(1)=1+i sqrt(3) , z_(2)=1-i sqrt(3), then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

Radius of the circle |(z-1)/(z-3i)|=sqrt(2)

Let z_(1)=(2sqrt(3)+ i6sqrt(7))/(6sqrt(7)+ i2sqrt(3))" and "z_(2)=(sqrt(11)+ i3sqrt(13))/(3sqrt(13)- isqrt(11)) . Then |(1)/(z_1)+(1)/(z_2)| is equal to

z_(1) = 1 +i , z_(2) = -sqrt3 + i , z_(3) = 1 + sqrt3i , z_(4) = 1 - i Arrange z_(1) , z_(2) , z_(3) , z_(4) is descending order of their principal values

If |sqrt2z- 3+2i|= |z| |sin ((pi)/(4) + arg z_(1)) + i cos((3pi)/(4) - arg z_(1))| , where z_(1)=1+ (1)/(sqrt3)i , then locus of z is

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Calculate the modulus and argument of (w)/(z)