Home
Class 12
MATHS
y=tan^(-1)((x^(1/3)+(11/3)/(1/3))/(1-x^(...

y=tan^(-1)((x^(1/3)+(11/3)/(1/3))/(1-x^(1/3)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the differentiation of y=tan^(-1)((x^(1//3)+a^(1//3))/(1-x^(1//3)a^(1//3)))

Find the differentiation of y=tan^(-1)((x^(1//3)+a^(1//3))/(1-x^(1//3)a^(1//3)))

If y=tan^(-1)((x^((1)/(3))+a^((1)/(3)))/(1-x^((1)/(3))a^((1)/(3)))) then find (dy)/(dx)

Find (dy)/(dx) , if y = tan^(-1) ((x^(1/3) + a^(1/3))/(1 - x^(1/3) a^(1/3)))

Differentiate tan^(-1){(x^(1//3)+a^(1//3))/(1-(a x)^(1//3))} with respect to x

tan^(-1)((3x-x^(3))/(1-3x^(2)))

Tan^(-1)((3x-x^(3))/(1-3x^(2)))=

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^(2))) where |x|<(1)/(sqrt(3))* Then a value of y is : (1)(3x-x^(3))/(1-3x^(2))(2)(3x+x^(3))/(1-3x^(2))(3)(3x-x^(3))/(1+3x^(2))(4)(3x+x^(3))/(1+3x^(2))

If y = tan^(-1)((3x-x^(3))/(1-3x^(2))) + tan^(-1) ((4x-4x^(3))/(1-6x^(2) + 4x^(4))) then (dy)/(dx) =

Find (dy)/(dx) in the following: y= tan^(-1) ((3x-x^(3))/(1-3x^(2))), |x| < (1)/(sqrt3)