Home
Class 12
MATHS
(e^((1)/(x))+e^((2)/(x))+e^((3)/(x)))/(a...

(e^((1)/(x))+e^((2)/(x))+e^((3)/(x)))/(ae^(-2x)*(1)/(x)+be^(-1+(3)/(x))),quad 0

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(sin x+cos x)^(cosecx),-(pi)/(2)

lim_(x->0)(e^(2x)-1)/(3x)

If f(x)={((sinx+cosx)^(cosecx),-(pi)/2ltxlt0),(a,x=0),((e^(1/x)+e^(2/x)+e^(3/x))/(ae^(-2+1/x)+be(-1+3/x)), 0ltxlt(pi)/2):} is continuous at x=0 then

int (e^(4x)-2e^(3x)+5e^(x)-2)/(e^(x)+1)dx

Prove that, int (e^(x))/(x^(4))dx=-(e^(x))/(3)[(1)/(x^(3))+(1)/(2x^(2))+(1)/(2x)]+(1)/(6)int (e^(x))/(x)dx .

The value of lim_(x rarr0)((1+2x)/(1+3x))^((1)/(x^(2)))*e^((1)/(x)) is e^((5)/(2))b.e^(2)ce^(-2)d.1

int(e^(x))/(x^(4))dx=-(e^(x))/(3)[(1)/(x^(3))+(1)/(2x^(2))+(1)/(2x)]+(1)/(6)int(e^(x))/(x)dx

Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1 then-