Home
Class 12
MATHS
" If "f(2)=4,f'(2)=1," prove that "lim(x...

" If "f(2)=4,f'(2)=1," prove that "lim_(x rarr2)(xf(2)-2f(x))/(x-2)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(f(x)-f(2))/(x-2)=

If f (2) = 4 andf'(2) = 1, show that lim_(xrarr2)(xf(2)-2f(x))/(x-2)=2

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)

answer any three questions:5. if f(2)=4,f'(2)=4, then evaluate lim _(x rarr 2) (xf(2)-2f(x))/(x-2)

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=4,f'(2)=4 , then evalute lim_(xto2)(xf(2)-2f(x))/(x-2) .

If f(2)=2,f'(2)=1. then lim_(x rarr2)(2x^(2)-4f(x))/(x-2)=(i)-4(ii)-2(iii)2(iv)

If f(2) = 4 and f^(')(2) =1 then lim_(x rarr 2) (x f(2)-2f (x))/(x-2)