Home
Class 12
MATHS
" In."1." Show that "int x^(n)e^(-x)dx=-...

" In."1." Show that "int x^(n)e^(-x)dx=-x^(n)e^(-x)+n int x^(n-1)e^(-x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

int e^(x)/(e^(x)+1) dx =

int(1)/(e^(x)+e^(-x))dx

int (e^(x))/(1+e^(x))dx

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

If I_(n) = int x^(n) e^(-x) dx prove that I_(n) = -x^(n) e^(-x) + nI_(n-1)

int(e^(x)dx)/(e^(x)-1)