Home
Class 14
MATHS
log(5)(5^(1/2)+125)=log(5)6+1+(1)/(2x)...

log_(5)(5^(1/2)+125)=log_(5)6+1+(1)/(2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:log_(5)(5^(1//x)+125)=log_(5)6+1+1//2x

If log_(5)(5^((1)/(x))+125)=log_(5)6+1+(1)/(2x), then x=

If log_5(5^(1/x)+125)=log_5 6+1+1/(2x) , then x =

Solve log_5(5^(1/x)+125)= log_5 6+1+1/(2)x .

Consider the inequalities log_(5)(x-3)+(1)/(2)log_(5)3<(1)/(2)log_(5)(2x^(2)-6x+7) and log_(3)x+log_(sqrt(3))x+log_((1)/(3))x<6

The number of value of x satisfying 1+log_(5)(x^(2)+1)>=log_(5)(x^(2)+4x+1) is

If log_(5)2,log_(5)(2^(x)-3) and log_(5)((17)/(2)+2^(x-1)) are in AP, then the value of x is

Suppose x, y in N and log_(5)(x)+log_(5)(x^(1//2))+log_(5)(x^(1//4))+….=y" (1)" (1+3+5+….+(2y-1))/(4+7+10+…+(3y+1))=(20)/(7 log_(5)(x))" (2)" then log_(10)(y)+log_(5)(x)=