Home
Class 12
MATHS
If |z1|=|z2|=.......=|zn|=1, prove that...

If `|z_1|=|z_2|=.......=|z_n|=1,` prove that `|z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=dot=|z_n|=1, prove that |z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)dot

If |z_(1)|=|z_(2)|=......=|z_(n)|=1, prove that |z_(1)+z_(2)+z_(3)++z_(n)|=(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))++(1)/(z_(n))

If |z_1|=|z_2|=|z_3|=......=|z_n|=1 , then |z_1+z_2+z_3+......+z_n|=

If |z_1|=|z_2|= ...... |z_n|=1 , prove that : |z_1+z_2+ ........ z_n|= |1/z_1+1/z_2+..........+1/z_n| .

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

If |z_(1)|=|z_(2)|=…... .=|z_(n)|=1 then |z_(1)+z_(2)+ .+z_(n)|=

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_(1)| = |z_(2)| = ….. |z_(n)| = 1 , prove that |z_(1) + z_(2) + …….. z_(n)| = |(1)/(z_(1)) + (1)/(z_(2)) + ……….. + (1)/(z_(n))| .

If |z_(1)|=|z_(2)|=....|z_(n)|=1 , then show that, |z_(1)+z_(2)+z_(3)+....z_(n)|= |(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))+...+(1)/(z_(n))|