Home
Class 14
MATHS
sqrt(((3)/(1))^(x+1))=(243)/(27)...

sqrt(((3)/(1))^(x+1))=(243)/(27)

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(((3)/(7))^(x+1))=(343)/(27

Find x, if : (sqrt((3)/(5)))^(x+1)=(125)/(27)

Find the number of integers 1<=x<=2010 such that the expression (x+(x+8)sqrt((x-1)/(27)))^((1)/(3))-(x+(x+8)sqrt((x-1)/(27)))^((1)/(3))

(27^(((1)/(5)))((x)/(4)-sqrt((x)/(3))))^((x)/(4)+sqrt((x)/(3)))=3^((7)/(4))

sqrt(1+(55)/(729))=1+(x)/(27), then the value of x is (a)1(b)3(c)5(d)7

3^((1)/(9)).9^((1)/(27)).27^((1)/(81)).81^((1)/(243))….oo=

((16)^((1)/(4)))/((27)^((1)/(3)))+((625)^((1)/(4)))/((81)^((1)/(4)))-(1)/((243)^((1)/(5)))=2

sqrt(27)-(9)/(sqrt(3))-root(4)((1)/(9))+root(6)((1)/(27))

If sqrt(1+(27)/(169))=1+(x)/(13); then x=