Home
Class 10
MATHS
sin^(4)theta+cos^(4)theta)=1-2sin^(2)the...

sin^(4)theta+cos^(4)theta)=1-2sin^(2)theta cos^(2)theta

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

"(i) "sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

If : sin^(4)theta+cos^(4)theta+sin^(2)theta*cos^(2)theta=1-u^(2), "then" : u=

Prove the following identity : sin^4 theta+ cos^4 theta= 1-2 sin^2 theta cos^2 theta .

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is