Home
Class 12
MATHS
beta*cosec^(-1)(2)...

beta*cosec^(-1)(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha+beta=90^(@) then prove that cosec^(2)alpha+cosec^(2)beta=cosec^(2)alphacosec^(2)beta .

Prove that identify: (cosec^(2)theta)/(cosectheta-1)-(cosec^(2)theta)/(cosectheta+1)=2sec^(2)theta

In DeltaABC , 1/a,1/b,1/c are in A.P. prove that "cosec"^(2)A/2, "cosec"^(2)B/2, "cosec"C/2 are also in A.P.

In DeltaABC , 1/a,1/b,1/c are in A.P. prove that "cosec"^(2)A/2, "cosec"^(2)B/2, "cosec"C/2 are also in A.P.

If alpha and beta are the roots of the equation x^2-4x + 1=0(alpha > beta) then find the value of f(alpha,beta)=(beta^3)/2csc^2(1/2tan^(- 1)(beta/alpha))+(alpha^3)/2sec^2(1/2tan^- 1(alpha/beta))

If alpha, beta are the roots of the equations 6x^2+11x+3=0 , then a)Both cos^(-1) alpha and cos^(-1) beta are real b)Both "cosec"^(-1) alpha and "cosec"^(-1) beta are real c)Both cot^(-1) alpha and cot^(-1) beta are real d)None of these

csc^(2)(alpha+beta)-sin^(2)(beta-alpha)+sin^(2)(2 alpha-beta)=cos^(2)(alpha-beta) where alpha,beta in(0,(pi)/(2)), then sin(alpha-beta) is equals

The value of alpha^(3)/2cosec^(2)(1/2tan^(-1)""alpha/beta)+beta^(3)/2sec^(2)(1/2tan^(-1)(beta/alpha)) is equal to

If alpha,beta(alpha < beta) are the roots of equation 6x^2+11="" x+3="0 , then which following real? (a) cos^(-1)alpha (b) sin^(-1)beta (c) cosec^(-1)alpha (d) both cot^(-1)alpha and cot^(-1)beta