Home
Class 11
MATHS
if d/(dx)(loge x)=1/x then d/(dx)(log10 ...

if `d/(dx)(log_e x)=1/x` then `d/(dx)(log_10 x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)log_|x|e=

d/(dx)log_|x|e=

(d)/(dx)[log_(a)x]

If x>0, then (d)/(dx){log_(7)(log x)}=

The differentiation of (log)_a x (a >0) with respect to x i.e. d/(dx)((log)_a x)= 1/(x(log)_e a)

(d)/(dx){log_(e)(ax)^(x)}

(d)/(dx)(log e^(x)*log x)

(d)/(dx)(e^(log_(e)x^(3)))

The differentiation of log _(e)x,x>0is(1)/(x)* i.e.(d)/(dx)(log_(e)x)=(1)/(x)