Home
Class 11
PHYSICS
The torque of force F = -3 hat(i)+hat(j)...

The torque of force `F = -3 hat(i)+hat(j) + 5 hat(k)` acting on a point `r = 7 hat(i) + 3 hat(j) + hat(k)` about origin will be

A

`14 hat(i)-38 hat(j) + 16 hat(k)`

B

`4 hat(i)+4hat(j)+6 hat(k)`

C

`-14 hat(i)+38 hat(j)-16 hat(k)`

D

`-21 hat(i)+3 hat(j)+5 hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque \( \tau \) of the force \( \mathbf{F} \) acting on a point \( \mathbf{r} \) about the origin, we use the formula: \[ \tau = \mathbf{r} \times \mathbf{F} \] ### Step 1: Write down the vectors Given: \[ \mathbf{F} = -3 \hat{i} + \hat{j} + 5 \hat{k} \] \[ \mathbf{r} = 7 \hat{i} + 3 \hat{j} + \hat{k} \] ### Step 2: Set up the cross product We need to compute the cross product \( \mathbf{r} \times \mathbf{F} \). We can set this up using a determinant: \[ \tau = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 7 & 3 & 1 \\ -3 & 1 & 5 \end{vmatrix} \] ### Step 3: Calculate the determinant To calculate the determinant, we expand it as follows: \[ \tau = \hat{i} \begin{vmatrix} 3 & 1 \\ 1 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} 7 & 1 \\ -3 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} 7 & 3 \\ -3 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 3 & 1 \\ 1 & 5 \end{vmatrix} = (3 \cdot 5) - (1 \cdot 1) = 15 - 1 = 14 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 7 & 1 \\ -3 & 5 \end{vmatrix} = (7 \cdot 5) - (1 \cdot -3) = 35 + 3 = 38 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 7 & 3 \\ -3 & 1 \end{vmatrix} = (7 \cdot 1) - (3 \cdot -3) = 7 + 9 = 16 \] ### Step 4: Combine the results Now substituting back into the expression for \( \tau \): \[ \tau = 14 \hat{i} - 38 \hat{j} + 16 \hat{k} \] ### Final Result Thus, the torque \( \tau \) is: \[ \tau = 14 \hat{i} - 38 \hat{j} + 16 \hat{k} \]

To find the torque \( \tau \) of the force \( \mathbf{F} \) acting on a point \( \mathbf{r} \) about the origin, we use the formula: \[ \tau = \mathbf{r} \times \mathbf{F} \] ### Step 1: Write down the vectors Given: ...
Promotional Banner

Topper's Solved these Questions

  • ROTATION

    DC PANDEY|Exercise Check point 9.3|15 Videos
  • ROTATION

    DC PANDEY|Exercise (A) Chapter Exercises|83 Videos
  • ROTATION

    DC PANDEY|Exercise Check point 9.1|20 Videos
  • RAY OPTICS

    DC PANDEY|Exercise Integer type q.|15 Videos
  • ROTATIONAL MECHANICS

    DC PANDEY|Exercise Subjective Questions|2 Videos

Similar Questions

Explore conceptually related problems

The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a point r = hat(i) - 2 hat(k)+hat(k) about origin will be

The torque of a force vec(F)=-2hat(i)+2hat(j)+3hat(k) acting on a point vec(r )=hat(i)-2hat(j)+hat(k) about origin will be

The torque of a force F = 2 hat(i) - 3 hat(j) +5 hat(k) acting at a point whose position vector r = 3 hat(i) - 3 hat(j) +5 hat(k) about the origin is

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

The torque of a force F = - 6 hat (i) acting at a point r = 4 hat(j) about origin will be

The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?

The torque of force barF= (2 hat i -3 hat j + 4 hat k) newton acting at the point = (3 hat i + 2 hat j+ 3 hat k) metre about origin is tau (in N-m). Find x. component of tau .

Find the magnitude of torque of torque of a force vec F = )-3 hat i+ hat j +5 hat k) . Newton actiong at the point vec r =(7 hat j+3 hat j +hat k) metre.

What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?

A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

DC PANDEY-ROTATION-Check point 9.2
  1. The torque of a force F = - 6 hat (i) acting at a point r = 4 hat(j) a...

    Text Solution

    |

  2. Moment of a force of magnitude 20 N acting along positive x-direction ...

    Text Solution

    |

  3. The torque of force F = -3 hat(i)+hat(j) + 5 hat(k) acting on a point ...

    Text Solution

    |

  4. The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a po...

    Text Solution

    |

  5. A door 1.6 m wide requires a force of 1 N to be applied at the free an...

    Text Solution

    |

  6. A flywheel of moment of inertia 2 "kg-m"^(2) is rotated at a speed of ...

    Text Solution

    |

  7. A mass of 10 kg connected at the end of a rod of negligible mass is ro...

    Text Solution

    |

  8. A disc is rotating with angular velocity omega. A force F acts at a po...

    Text Solution

    |

  9. Angular momentum is

    Text Solution

    |

  10. The unit mass having r = 8 hat(i) - 4 hat(j) and v = 8 hat(i) + 4 hat(...

    Text Solution

    |

  11. If the earth is a point mass of 6 xx 10^(24) kg revolving around the s...

    Text Solution

    |

  12. A particle with the position vector r has linear momentum p. Which of ...

    Text Solution

    |

  13. By keeping moment of inertia of a body constant, if we double the time...

    Text Solution

    |

  14. It torque is zero, then

    Text Solution

    |

  15. Total angular momentum of a rotating body remains constant, if the net...

    Text Solution

    |

  16. The angular momentum of a rotating body changes from A(0) to 4 A(0) in...

    Text Solution

    |

  17. If the radius of earth contracts 1/n of its present day value, the len...

    Text Solution

    |

  18. A thin circular ring of mass M and radius R is rotating about its axis...

    Text Solution

    |

  19. A disc of mass 2 kg and radius 0.2 m is rotating with angular velocity...

    Text Solution

    |

  20. Circular disc of mass 2 kg and radius 1 m is rotating about an axis pe...

    Text Solution

    |