Home
Class 11
MATHS
Given f(k)= lim(x->4)(x^2-2x+2k)/(x^2-3x...

Given `f(k)= lim_(x->4)(x^2-2x+2k)/(x^2-3x+k)` . If `f(-4)=p` and `f(k)=q` for all `k = -4,` then `(p,q)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x->oo)(x^2+3x+5)/(4x+1+x^k) exists then K (a) k =2 (b) k 2 (d) k >=2

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

lim_(x rarr 0)(1+x(1+f(x)/(k x^2))^(1//x)=e^3 and f(4)=64 then k has value

If f(x)=int_(x^(2))^(x^(3))ln tdt,(x>0) and f'((4)/(9))=f'(k) then values of k can be

f(x) = {((sin 2x)^(tan^(2)2x), x ne pi/4),(k, x = pi/4):} . If f(x) is continuous at x = pi/4 , then k =

Let f (x = {{: ((x^(2) - 4x + 3)/(x^(2) + 2x - 3), x ne 1),(k, x = 1):} If f (x) is continuous at x= 1, then the value of k will be

f(x)={((x^2-4)/(x-2),x!=2),(2k,x=2):} is continuous at x=2 then k=

Let f(x)=int e^(x^(2))(x-2)(x-3)(x-4)dx then f increases on (k,k+1) then k is

lim_ (x rarr0) ((x + k) ^ (4) -x ^ (4)) / (k (k + 2x))