Home
Class 12
MATHS
sum(n=1)^(5)sin^(-1)sin(2n-1)=...

sum_(n=1)^(5)sin^(-1)sin(2n-1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is

(sum_(n=1)^(10)int_(-2n-1)^(-2n)sin^(27)(x)dx+sum_(n=1)^(10)int_(2n)^(2n+1)sin^(27)(x)dx)

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

The value of [sum_(n=1)^(10)int_(-2n-1)^(-2n)sin^(27)x dx+sum_(n=1)^(10)int_(2n)^(2n+1)sin^(27)xdx] is equal to -

If n in N, sum_(k=1)^(n)cos^(-1)(x_(k))=npi then the value of sum_(k=1)^(n)sin^(-1)(x_(k))=

For x in(0,(pi)/(4)). Let S_(n)=sum_(r=1)^(2n)sin(sin^(-1)x^(3r-2)),C_(n)=sum_(r=1)^(2n)cos(cos^(-1)x^(3r-1)) and T_(n)=sum_(r=1)^(2n)tan(tan^(-1)x^(3r)) where n in N and n>=3

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi