Home
Class 12
MATHS
If x=sin^(-1)((2t)/(1+t^2))"and"y=tan^(...

If `x=sin^(-1)((2t)/(1+t^2))"and"y=tan^(-1)((2t)/(1-t^2)),-1

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin^(-1)((2t)/(1+t^(2))) and y=tan^(-1)((2t)/(1-t^(2))),t>1. Prove that (dy)/(dx)=-1

If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))), then prove that (dy)/(dx)=1 .

If x=sin^-1""(2t)/(1+t^2) and y=tan ^-1""(2t)/(1-t) " the n find " dy/dx.

Derivative of tan^(-1)((2t)/(1-t^(2)))w.r.tsin^(-1)((2t)/(1+t^(2))) is

sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

Prove that: tan^-1 +tan^-1 ((2t)/(1-t^2))=tan^-1( (3t-t^3)/(1-3t^2)), if - 1/sqrt(3),xlt 1/sqrt(3)

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the value of (dy)/(dx) is