Home
Class 12
MATHS
int((x^(4)+x^(2)+1)/(x^(2)-x+1))dx=...

int((x^(4)+x^(2)+1)/(x^(2)-x+1))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

int e^(x)((x^(4)+x^(2)+1)/(x^(2)+x+1))dx=

int (x^(4) + x^(2) +1)/(x^(2) + 1) dx =

(i) int((x^(2) - 1)/(x^(2) + 1))dx , (ii) int ((x^(6)- 1)/(x^(2) + 1))dx (iii) int ((x^(4))/(1+x^(2)))dx , (iv) int((x^(2))/(1+x^(2)))dx

int(dx)/(x^(4)+x^(2)+1)

int (x^(4))/(x^(2)+1)dx

int(x^(4)+1-x^(2))/(x^(6)+1)dx=

int(x^(2))/((x^(2)+1)(x^(2)+4))dx

int(x^(4))/(1+x^(2))dx