Home
Class 12
MATHS
[" 22.Positive numbers "x,y" and "z" sat...

[" 22.Positive numbers "x,y" and "z" satisfy "xyz=10^(81)" and "],[[(log_(10)x)(log_(10)yz)+(log_(10)y)(log_(10)z)=468." Find "],[" the value of "(log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Positive numbers x,y backslash and backslash z satisfy xyz:)=(:10^(1) and (log_(10)x)*(log_(10)yz)+(log_(10)y)*(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)

(log_(10)100x)^(2)+(log_(10)10x)^(2)+log_(10)x<=14

If the positive numbers x,y&z satisfy xyz=1000,log_(10)x log_(10)y+log_(10)xy log_(10)z=1 and log_(x)10+log_(y)10+log_(z)10=(1)/(3) then the value of root(3)((log_(10)x)^(3)+(log_(10)y)^(3)+(log_(10)z)^(3)) is

Solution set of (log_(10)(100x))^(2)+(log_(10)(10x))^(2)+log_(10)(x)<=14

If log_(10)x, log_(10)y, log_(10)z are in AP, then x,y,z are in:

((log_(10)x)/(2))^(log_(10)^(2)x+log_(10)x^(2)-2)=log_(10)sqrt(x)

If log_(10)2 log_(2)10 + log_(10)(10^(x)) =2 , then what is the value of x?

Find the value of x satisfying (log_(10)(2^(x)+x-41)=x(1-log_(10)5)