Home
Class 12
MATHS
[" If "y=sin^(-1)x" ,then prove that: "]...

[" If "y=sin^(-1)x" ,then prove that: "],[(d^(2)y)/(dx^(2))=(x)/((1-x^(2))^(3/2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If y=sin^(-1)x, show that (d^(2)y)/(dx^(2))=(1)/((1-x^(2))^(3/2))

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=tan x+sec x, prove that (d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))

If y=tan X+sec x, prove that (d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If y=5" cos"x-3" sin"x , prove that (d^(2)y)/(dx^(2))+y=0.