Home
Class 14
MATHS
" 1) "2sqrt((1)/(4))sin^(2)theta=(1)/(2)...

" 1) "2sqrt((1)/(4))sin^(2)theta=(1)/(2)(0<0<90)^(" al ")" a an ala follow "

Promotional Banner

Similar Questions

Explore conceptually related problems

cos theta sqrt(1-sin^(2)theta)=

tan theta= A) (sqrt(1-sin^(2)theta))/(sin theta) , B) (1)/(sec theta) , C) (sin theta)/(sqrt(1-sin^(2)theta)) D) (1)/(sqrt(1+Cot^(2)theta)

Let f(0)=sqrt(sin^(4)theta+4cos^(2)theta)-sqrt((cos^(4)theta)+4sin^(2)theta) ,then

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

If tan theta = 3/4 show that sqrt((1-sin theta)/(1+sin theta)) = 1/2 .

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

Let theta,phi in[0,2 pi] be such that 2cos theta(1-sin phi)=sin^(2)theta((tan)(theta)/(2)+(cot)(theta)/(2))cos phi-1,tan(2 pi-theta)>0 and -1