x+y=4

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorize: x^4y^4-x y

Find y ''' if x^4 + y^4 = 16.

| x | + | y | = 4

The general solution of differential equation (x^6y^4+x^2)dy=(1-x^5y^5-x y)dx is (a)In |x|=x y+(x^4y^4)/4+C (b)In |y|=x y+(x^5y^5)/4+C (c)In |y|=x y+(x^5y^5)/2+C (d)In |x|=x y+(x^4y^4)/5+C

If log_5 ((x^(4)+y^(4))/(x^(4)-y^(4))) =2 , show that (dy)/(dx) = (12x^(3))/(13y^(2))

Equations of the common tangents to the parabola, y=x^(2) and y=-(x-2)^(2) are [x=0,x=4y-2],[x=0,y=4x-2],[y=0,y=4x+4],[y=0,y=4x-4]

Simplify : (x^(4) - y^(4))/(x^(2) - y^(2))

The HCF of 64x^(6) y^(4) , 48 x^(4)y^(8) , and 54x^(5)y^(4 is "_________" .

Given that x^2 + y^2 =4 and x^2 + y^2 -4x -4y =-4 , then x + y =