Home
Class 11
MATHS
If both roots of the equation a x^2+x+c-...

If both roots of the equation `a x^2+x+c-a=0` are imaginary and `c >-1,` then `3a >2+4c` b. `3a<2+4c` c. `c

Promotional Banner

Similar Questions

Explore conceptually related problems

If both roots of the equation a x^2+x+c-a=0 are imaginary and c > -1, then a. 3a >2+4c b. 3a<2+4c c. c < a d. none of these

If both roots of the equation a x^2+x+c-a=0 are imaginary and c > -1, then a) 3a >2+4c b) 3a<2+4c c) c < a d) none of these

If both roots of the equation ax^(2)+x+c-a=0 are imaginary and c>-1, then 3a>2+4c b.3a<2+4c .c

If both roots of the equation a(x^(2)-1)+x+c are imaginary and c>-1 then

If both roots of the equation a(x^2-1)+x+c are imaginary and c gt -1 then

If both roots of the equation a(x^2-1)+x+c are imaginary and c gt -1 then

The roots of the equation ( a-b) x^2 +(b-c) x+ (c-a) =0 are

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0