Home
Class 12
MATHS
If y=e^x^e^x+e^x^x^e , prove that (dy)/(...

If `y=e^x^e^x+e^x^x^e` , prove that `(dy)/(dx)=e^x^e^xdotx^e^x{(e^x)/x+edotlogx}+x^e^e^xdote^e^x{1/x+dotlogx}+e^x^x^ex^x^ex^(e-1){1+elogx}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

If e^x+e^y=e^(x+y) then prove that dy/dx =- e^(y-x)

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

Solve ((dy)/(dx))=e^(x-y)(e^(x)-e^(y))

(e^x+e^-x)/(e^x-e^(-x))

If y=e^(x+e^(x+e^(x)+cdots*oo)), prove that (dy)/(dx)=(y)/(1-y)

If y = e^x + x^e + e^e , find (dy)/(dx) at x=e .

If y=e^(x).e^(2x).e^(3x)…..e^(nx) , then (dy)/(dx) =