Home
Class 12
MATHS
" (2) "y=tan'{(sqrt(1+x^(2))-sqrt(1-x^(2...

" (2) "y=tan'{(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}" Find "(dy)/(dx)[arg(x)/(sqrt(1-x^(4)))lp atquad x^(2)=cos2 theta

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)(((sqrt(1+x^(2))-sqrt(1-x^(2)))/((sqrt(1+x^(2))+sqrt(1-x^(2)))) find (dy)/(dx)

y=(tan^(-1)(sqrt(1+x^(2))+sqrt(1-x^(2))))/(sqrt(1+x^(2))-sqrt(1-x^(2))) then (dy)/(dx)

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

If y = tan^(-1) ((sqrt(1+x^(2)) -sqrt(1-x^(2)))/(sqrt(1+x^(2)) + sqrt(1-x^(2)))) then dy/dx =

y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy/dx

If y = tan^(-1) ((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) show that (dy)/(dx) = x/sqrt(1-x^4) .

If y=tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))] for 0<|x|<1 ,find (dy)/(dx)