Home
Class 12
MATHS
[" (c) "sqrt(14)sin^(-1)(x)/(3)+sin^(-1)...

[" (c) "sqrt(14)sin^(-1)(x)/(3)+sin^(-1)(y)/(4)=(pi)/(6)quad 37,06<" Gells "Q" (2) "],[(x^(2))/(9)+(xy)/(4sqrt(3))+(y^(2))/(16)=(1)/(4)]

Promotional Banner

Similar Questions

Explore conceptually related problems

sin ^(-1)sqrt(3)x+sin ^(-1)x=(pi)/(2)

sin ^ (- 1) ((x) / (3)) + sin ^ (- 1) ((y) / (4)) = (pi) / (6) then prove that (x ^ (2)) / (9) + (y ^ (2)) / (16) + (xy) / (4sqrt (3)) = (1) / (4)

Solve sin^(-1)(14)/(|x|)+sin^(-1)(2sqrt(15))/(|x|)=(pi)/(2)

If sin^(-1)x+sin^(-1)y=(pi)/(3) and cos^(-1)x+cos^(-1)y=(pi)/(6), find the values of x and y.

Solve sin^(-1). (14)/(|x|) + sin^(-1).(2 sqrt15)/(|x|) = (pi)/(2)

Solve sin^(-1). (14)/(|x|) + sin^(-1).(2 sqrt15)/(|x|) = (pi)/(2)

The solution of the equation sin^(-1)((tan)(pi)/(4))-sin^(-1)(sqrt((3)/(x)))-(pi)/(6)=0

Solve sin^(-1)(14)/(|x|)+sin^(-1)(2sqrt(15))/(|x|)=pi/2

Solve sin^(-1)(14)/(|x|)+sin^(-1)(2sqrt(15))/(|x|)=pi/2

sin^(-1)[tan""(pi)/(4)]-sin^(-1)[sqrt((3)/(x))]=(pi)/(6). Then x is a root of the equation