Home
Class 12
MATHS
(1)/(b-a)+(1)/(b-c)=(1)/(a)+(1)/(c)," th...

(1)/(b-a)+(1)/(b-c)=(1)/(a)+(1)/(c)," then "a,b,c" are in "

Promotional Banner

Similar Questions

Explore conceptually related problems

Which one of the following is correct? If (1)/(b-c)+(1)/(b-a)=(1)/(a)+(1)/(c), then a, b, c are in

If (1)/(b-a)+ (1)/(b-c) = (1)/(a) +(1)/(c ) then prove that a, b,c are in H.P

If 1/(b-a) +1/(b-c)=1/a+1/c , then a,b and c are in

(1)/(a)+(1)/(c)+(1)/(a-b)+(1)/(c-b)=0 and b!=a+c, then a,b,c are in

If a ((1)/(b) + (1)/(c)) , b((1)/(c) + (1)/(a)) , c ((1)/(a)+ (1)/(b)) are in AP then a, b, c are in :

If a,b,c are in H .P.then (1)/(a)+(1)/(b+c),(1)/(b)+(1)/(a+c),(1)/(c)+(1)/(a+b) are in

If a,b,c are in A.P then a((1)/(b) + (1)/(c )), b ((1)/(c ) + (1)/(a)), c ((1)/(a ) + (1)/(b)) are in

a+b+c=6and(1)/(a)+(1)/(b)+(1)/(c)=(3)/(2), then find (a)/(b)+(b)/(c)+(b)/(a)+(b)/(c)+(c)/(a)+(c)/(b)

if a+b+c=6 and (1)/(a)+(1)/(b)+(1)/(c)=(3)/(2) then find (a)/(b)+(a)/(c)+(b)/(a)+(b)/(c)+(c)/(a)+(c)/(b)