Home
Class 11
MATHS
(b-c)/acos^2 (A/2)+(c-a)/bcos^2(B/2)+(a-...

`(b-c)/acos^2 (A/2)+(c-a)/bcos^2(B/2)+(a-b)/c cos^2(C/2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

in any triangle ABC prove that (b-c)/acos^2(A/2)+(c-a)/(b)cos^2(B/2)+(a-b)(/c)cos^2(C/2)=0

In DeltaABC , prove that: (b-c)/acos^(2)A/2+(c-a)/(b)cos^(2)B/2+(a-b)/(c ).cos^(2)C/2=0

In a DeltaA B C , prove the following : 4\ (b c cos^2(A/2)+c acos^2(B/2)+a bcos^2(C/2)\ )\ =(a+b+c)^2

(b^(2)-c^(2))/(a)cos A+(c^(2)-a^(2))/(b)cos B+(a^(2)-b^(2))/(c)cos C=0

If a ,b ,c denote the lengths of the sides of a triangle opposite to angles A ,B ,C respectively of a A B C , then the correct relation among a ,b , cA ,Ba n dC is given by (b+c)sin((B+C)/2)=acos b. (b-c)cos(A/2)=asin((B-C)/2) c. (b-c)cos(A/2)=2asin((B-C)/2) d. (b-c)sin((B-C)/2)="a c o s"A/2

a(cos C-cos B)=2(b-c)cos^(2)(A)/(2)

In a DeltaABC, bcos^(2)'(A)/(2) + acos^(2)"(B)/(2) = (3)/(2)c , then a, c, b in (with usual notations)

In a DeltaABC, bcos^(2)'(A)/(2) + acos^(2)"(B)/(2) = (3)/(2)c , then a, c, b in (with usual notations)