Home
Class 12
MATHS
The value of the expression cot^(-1) (1...

The value of the expression `cot^(-1) (1/2) + cot^(-1) (9/2) + cot^(-1) (25/2) + cot^(-1) (49/2)` upto + .......n terms is

A

`tan^(-1) 2n`

B

`tan^(-1) (2n - 1)`

C

`tan^(-1)n`

D

`tan^(-1) 2n - tan^(-1) 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cot^{-1} \left( \frac{1}{2} \right) + \cot^{-1} \left( \frac{9}{2} \right) + \cot^{-1} \left( \frac{25}{2} \right) + \cot^{-1} \left( \frac{49}{2} \right) \) up to \( n \) terms, we can use some properties of inverse trigonometric functions. ### Step 1: Rewrite the cotangent inverse We can use the property that \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \). Therefore, we can rewrite each term in the expression: \[ \cot^{-1} \left( \frac{1}{2} \right) = \tan^{-1}(2), \quad \cot^{-1} \left( \frac{9}{2} \right) = \tan^{-1}\left(\frac{2}{9}\right), \quad \cot^{-1} \left( \frac{25}{2} \right) = \tan^{-1}\left(\frac{2}{25}\right), \quad \cot^{-1} \left( \frac{49}{2} \right) = \tan^{-1}\left(\frac{2}{49}\right) \] ### Step 2: Identify the pattern Notice that the terms can be expressed in a general form: \[ \cot^{-1} \left( \frac{(2k-1)^2}{2} \right) \text{ for } k = 1, 2, 3, \ldots, n \] This means we can express the summation as: \[ \sum_{k=1}^{n} \cot^{-1} \left( \frac{(2k-1)^2}{2} \right) \] ### Step 3: Use the addition formula Using the addition formula for inverse tangent: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x-y}{1+xy}\right) \] we can express the sum as: \[ \tan^{-1}(2) - \tan^{-1}(0) + \tan^{-1}(4) - \tan^{-1}(2) + \tan^{-1}(6) - \tan^{-1}(4) + \ldots + \tan^{-1}(2n) - \tan^{-1}(2n-2) \] ### Step 4: Cancel terms Notice that in this telescoping series, all terms cancel except for the last term: \[ \tan^{-1}(2n) - \tan^{-1}(0) \] Since \( \tan^{-1}(0) = 0 \), we have: \[ \tan^{-1}(2n) \] ### Step 5: Final expression Thus, the value of the expression up to \( n \) terms is: \[ \tan^{-1}(2n) \] ### Conclusion Therefore, the final answer is: \[ \boxed{\tan^{-1}(2n)} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 12

    NTA MOCK TESTS|Exercise MATHEMETIC - SUBJECTIVE NUMERICAL|5 Videos
  • JEE MOCK TEST 11

    NTA MOCK TESTS|Exercise MATH|25 Videos
  • JEE MOCK TEST 13

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

Find the value of the following expression: cot(tan^(-1)a+cot^(-1)a)

The value of cot(pi/4-2 cot^(-1)3) is

Evaluate cot (tan^(-1) (2x) + cot^(-1) (2x))

the value of the expression cot2cot3-cot3cot5-cot5cot2=

Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo

cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1)