Home
Class 12
MATHS
The point of intersection of the lines ...

The point of intersection of the lines
`vec(r) = 7hat(i) + 10 hat(j)+ 13 hat(k)+vec(s)(2hat(i) + 3hat(j)+4hat(k))` and `vec(r) = 3hat(i) + 5hat(j) + 7hat(k) + t(hat(i) + 2hat(j) + 3hat(k))` is

A

`hat(i) + hat(j) - hat(k)`

B

`2hat(i) - hat(j) + 4hat(k)`

C

`hat(i) - hat(j) + hat(k)`

D

`hat(i) + hat(j) + hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the point of intersection of the given lines, we need to equate the two vector equations and solve for the parameters \( s \) and \( t \). ### Step 1: Write down the vector equations The two lines are given as: 1. \( \vec{r_1} = 7\hat{i} + 10\hat{j} + 13\hat{k} + s(2\hat{i} + 3\hat{j} + 4\hat{k}) \) 2. \( \vec{r_2} = 3\hat{i} + 5\hat{j} + 7\hat{k} + t(\hat{i} + 2\hat{j} + 3\hat{k}) \) ### Step 2: Set the two equations equal to each other To find the point of intersection, we set \( \vec{r_1} = \vec{r_2} \): \[ 7\hat{i} + 10\hat{j} + 13\hat{k} + s(2\hat{i} + 3\hat{j} + 4\hat{k}) = 3\hat{i} + 5\hat{j} + 7\hat{k} + t(\hat{i} + 2\hat{j} + 3\hat{k}) \] ### Step 3: Expand both sides Expanding both sides gives: \[ (7 + 2s)\hat{i} + (10 + 3s)\hat{j} + (13 + 4s)\hat{k} = (3 + t)\hat{i} + (5 + 2t)\hat{j} + (7 + 3t)\hat{k} \] ### Step 4: Set up equations for each component From the equality of coefficients, we can set up the following equations: 1. \( 7 + 2s = 3 + t \) (Equation 1) 2. \( 10 + 3s = 5 + 2t \) (Equation 2) 3. \( 13 + 4s = 7 + 3t \) (Equation 3) ### Step 5: Solve the equations simultaneously From Equation 1: \[ 2s - t = -4 \quad \Rightarrow \quad t = 2s + 4 \quad \text{(Equation 4)} \] Substituting Equation 4 into Equation 2: \[ 10 + 3s = 5 + 2(2s + 4) \] Expanding gives: \[ 10 + 3s = 5 + 4s + 8 \] \[ 10 + 3s = 13 + 4s \] Rearranging gives: \[ 10 - 13 = 4s - 3s \quad \Rightarrow \quad -3 = s \] Now substituting \( s = -3 \) back into Equation 4 to find \( t \): \[ t = 2(-3) + 4 = -6 + 4 = -2 \] ### Step 6: Find the point of intersection Now we can substitute \( s = -3 \) into the first line equation to find the point of intersection: \[ \vec{r_1} = 7\hat{i} + 10\hat{j} + 13\hat{k} + (-3)(2\hat{i} + 3\hat{j} + 4\hat{k}) \] Calculating this gives: \[ = 7\hat{i} + 10\hat{j} + 13\hat{k} - 6\hat{i} - 9\hat{j} - 12\hat{k} \] \[ = (7 - 6)\hat{i} + (10 - 9)\hat{j} + (13 - 12)\hat{k} \] \[ = 1\hat{i} + 1\hat{j} + 1\hat{k} \] Thus, the point of intersection is: \[ \vec{P} = \hat{i} + \hat{j} + \hat{k} \] ### Final Answer The point of intersection of the lines is \( \hat{i} + \hat{j} + \hat{k} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 12

    NTA MOCK TESTS|Exercise MATHEMETIC - SUBJECTIVE NUMERICAL|5 Videos
  • JEE MOCK TEST 11

    NTA MOCK TESTS|Exercise MATH|25 Videos
  • JEE MOCK TEST 13

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Show that the lines vec(r )=(3hat(i) -15hat(j) + 9hat(k)) + lambda(2hat(i) -7hat(j) +5hat(k)) and vec(r )=(-hat(i) + hat(j) + 9hat(k)) + mu (2hat(i) + hat(j) -3hat(k)) do not intersect.

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find out whether the following pairs of lines are parallel, non parallel, & intersecting, or non-parallel & non-intersecting. vec(r_(1)) = hat(i) - hat(j) + 3hat(k) + lambda(hat(i) - hat(j)+hat(k)) vec(r_(2)) = hat(i) - hat(j) + 3hat(k) + lambda(hat(i) - hat(j) + hat(k)) vec(r_(2)) = 2hat(i) + 4hat(j) + 6hat(k) + mu (2hat(i) + hat(j) + 3hat(k))