Home
Class 12
MATHS
If sum(k = 1)^(oo) (1)/((k + 2)sqrt(k) +...

If `sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c))`, where `a, b, c in N` and `a,b,c in [1, 15]`, then a + b + c is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite series: \[ \sum_{k=1}^{\infty} \frac{1}{(k + 2)\sqrt{k} + k\sqrt{k + 2}} \] ### Step 1: Simplify the Denominator We start by factoring out \(\sqrt{k + 2}\) and \(\sqrt{k}\) from the denominator: \[ (k + 2)\sqrt{k} + k\sqrt{k + 2} = \sqrt{k + 2}(\sqrt{k + 2} + \sqrt{k}) + \sqrt{k}(\sqrt{k + 2} + \sqrt{k}) \] This can be rewritten as: \[ \sqrt{k}\sqrt{k + 2}(\sqrt{k + 2} + \sqrt{k}) \] ### Step 2: Multiply by the Conjugate Next, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{\sqrt{k + 2} - \sqrt{k}}{(k + 2) - k} = \frac{\sqrt{k + 2} - \sqrt{k}}{2} \] This gives us: \[ \sum_{k=1}^{\infty} \frac{\sqrt{k + 2} - \sqrt{k}}{2} \] ### Step 3: Split the Series Now, we can split the series into two parts: \[ \sum_{k=1}^{\infty} \frac{1}{2} \left( \sqrt{k + 2} - \sqrt{k} \right) \] This can be rewritten as: \[ \frac{1}{2} \left( \sum_{k=1}^{\infty} \sqrt{k + 2} - \sum_{k=1}^{\infty} \sqrt{k} \right) \] ### Step 4: Telescoping Series Notice that this is a telescoping series. Most terms will cancel out: \[ \frac{1}{2} \left( \sqrt{3} - \sqrt{1} + \sqrt{4} - \sqrt{2} + \sqrt{5} - \sqrt{3} + \ldots \right) \] ### Step 5: Evaluate the Remaining Terms After cancellation, we are left with: \[ \frac{1}{2} \left( \sqrt{2} + 1 \right) \] ### Step 6: Final Expression Now, we can express this in the required form: \[ \frac{\sqrt{2} + 1}{2} \] ### Step 7: Identify \(a\), \(b\), and \(c\) We can match this with the form \(\frac{\sqrt{a} + \sqrt{b}}{\sqrt{c}}\): - \(a = 2\) - \(b = 1\) - \(c = 4\) ### Step 8: Calculate \(a + b + c\) Finally, we calculate: \[ a + b + c = 2 + 1 + 4 = 7 \] ### Conclusion Thus, the answer is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 12

    NTA MOCK TESTS|Exercise MATHEMETIC - SUBJECTIVE NUMERICAL|5 Videos
  • JEE MOCK TEST 11

    NTA MOCK TESTS|Exercise MATH|25 Videos
  • JEE MOCK TEST 13

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

sum_(k=1)^(oo)(1)/(k sqrt(k+2)+(k+2)sqrt(k))=(2+sqrt(2))/(a) then

Suppose sum_(n=1)^(oo)(1)/((n+2)sqrt(n)+nsqrt(n+2))=(sqrt(b)+sqrt(c))/(sqrt(a)) where a,b,c in N and A = ((sqrt(a),b),(c,sqrt(a))) then (det(A))/(bc) is equal to ____

If sum_(k=4)^(143)(1)/(sqrt(k)+sqrt(k+1))=a-sqrt(b) then a and b are respectively

If sum_(k=4)^(143) (1)/(sqrt(k)+sqrt(k+1))=a-sqrt(b) then a and b respectively are

If int_(0)^(1)(1)/(sqrt(3+x)+sqrt(1+x))dx=a+b sqrt(2)+c sqrt(3) ,where a,b,c are rational numbers, then 2a+3b-4c , is equal to:

if (1)/(sqrt(2)+sqrt(3)+sqrt(5))=a sqrt(2)+b sqrt(3)+c sqrt(30) then value of a+b+c is (where a,b,c are rational numbers)

If sum of series S=(sqrt(2)+1)+1+(sqrt(2)-1)+....oo is given as (a+b sqrt(2))/(c), where a,b,c in N value of (a+b)/(c), is

If a,b,c are in A.P then (1)/(sqrt(b)-sqrt(c)),(1)/(sqrt(c)-sqrt(a)),(1)/(sqrt(a)-sqrt(b)) are in