Home
Class 12
MATHS
" Det "f(x,y)=(x-y)/(x+y),x+y!=1," then ...

" Det "f(x,y)=(x-y)/(x+y),x+y!=1," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x,y)=(x-y)/(x+y),x+y!=1, then

If f(x) = x/(x - 1) = 1/y , then f(y) =

If f(x, y)=(max (x, y))^(min (x, y)) and g(x, y)=max (x, y) -min (x, y) , then f(g(-1,(-3)/(2)), g(-4,-1.75)) equals

If y=f(x)=(2x-1)/(x-2), then f(y)=

f(x/y)=f(x)/f(y) and f'(1)=2024 , then

If quad f(x,y)-(max(x,y))^(min(x,y)) and g(x,y)=max(x,y)-min(x,y), then f(g(-1,-(3)/(2)),(-4,-1.75)) equals

Which of the following functions have the graph symmetrical about the origin? f(x) given be f(x)+f(y)=f((x+y)/(1-xy))f(x) given by f(x)+f(y)=f(x sqrt(1-y^(2))+y sqrt(1-x^(2)))f(x) given by f(x+y)=f(x)+f(y)AA x,y in R none of these

If f(x) = (x-1)/(x+1) , then prove that (f(x)-f(y))/(1+f(x)f(y))=(x-y)/(1+xy) .