Home
Class 10
MATHS
2x+3y=2;x-(4)/(2)=(1)/(2)...

2x+3y=2;x-(4)/(2)=(1)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

(x+3)/(2)-y=2,(x-3)/(2)+2y-4(1)/(2) then x=……..

2x^(2)-3x+4,2-x+x^(2),2y^(2)-(3)/(2)y+(1)/(4) are quadratic polynomials.

Find the products: 2x+3y)(2x-3y)(x-1)(x+1)(x^(2)+1)(x^(4)+1)

Solve:(1)/(2(2x+3y))+(12)/(7(3x-2y))=(1)/(2)(7)/(2x+3y)+(4)/(3x-2y)=2 where 2x+3y!=0 and 3x-2y!=0

(1)/(2(3x+4y))=(1)/(5(2x-3y))=(1)/(4),

If the normal at the point P(x_(i),y_(i)),i=1,2,3,4 on the hyperbola xy=c^(2) are concurrent at the point Q(h,k) then _((x_(1)+x_(2)+x_(3)+x_(4))(y_(1)+y_(2)+y_(3)+y_(4)))((x_(1)+x_(2)+x_(3)+x_(4))(y_(1)+y_(2)+y_(3)+y_(4)))/(x_(1)x_(2)x_(3)x_(4)) is

Evaluate (3x^(4)y^(2))(2x^(2)y^(3)) for x = 1 and y = 2.

Solve : (1)/(2x)+(1)/(4y)-(1)/(3z)=(1)/(4),(1)/(x)=(1)/(3y),(1)/(x)-(1)/(5y)+(4)/(z)=2 (2)/(15)

Consider the following equation in x and y : (x-2y-1)^(2)+(4x+3y-4)^(2)+(x-2y-1)(4x+3y-4)=0 How many solutions to (x,y) with x,y real,does the equation have