Home
Class 14
MATHS
" (iii) "tan^(-1)x+tan^(-1)y=pi+tan^(-1)...

" (iii) "tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy)),xy>1,x>0,y>0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

If x,y are real numbers such that xy<1 then tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

Assertion (A) : The value of "tan"^(-1)+"tan"^(-1)3=(3pi)/(4) Reason (R) : If x gt 0, y gt , 0, xy gt 1 then tan^(-1)x+tan^(-1)y=pi +tan^(-1)((x+y)/(1-xy))

tan^-1 x + tan^-1y= tan^-1 (frac{x+y}{1-xy} ).

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

Q.tan^(^^)-1x+tan^(^^)-1y=pi+tan^(^^)-1((x+y)/(1-xy)) if x,y>0 and xy>0Q*cos^(^^)-1x+cos^(^^)-1y=2pi-cos^(^^)-1(xy-sqrt(1-x^(^^)2)sqrt(1-y^(^^)2)) if x+y<0

" (a) "tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)(x+y+z-xyz)/(1-xy-yz-zx)