Home
Class 12
MATHS
If the straight line xcosalpha+ysinalpha...

If the straight line `xcosalpha+ysinalpha=p` touches the curve `(x^2)/(a^2)-(y^2)/(b^2)=1,` then prove that `a^2cos^2alpha-b^2sin^2alpha=p^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1 , then p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ s in^2alpha=p^2 .

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha-b^(2)sin^(2)alpha=p^(2)

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha+b^(2)sin^(2)alpha=p^(2)

If the straight line x cos alpha + y sin alpha = p touches the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then prove that a^(2)cos^(2)alpha+b^(2)sin^(2)alpha= p^(2) .

If the straight line x cos alpha + y sin alpha = p touches the curve (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 , then prove that a^(2) cos^(2) alpha + b^(2) sin^(2) alpha = p^(2) .

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

Prove that the line xcosalpha+ysinalpha=p touches the ellipse (x^2/a^2+y^2/b^2)=1 If p^2=a^2coas^2alpha+b^2sin^2alpha .