Home
Class 12
MATHS
Given a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ ...

Given `a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ c-b!=1,\ c+b!=1,\ ` prove that : `(log)_("c"+"b")a+(log)_("c"-"b")a=2(log)_("c"+"b")adot(log)_("c"-"b")a`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a right angled triangle, a\ a n d\ b are the lengths of sides and c is the length of hypotenuse and c-b!=1,\ c+b!=1 , then show that (log)_("c"+"b")"a"+(log)_("c"-"b")"a"=2(log)_("c"+"b")adot(log)_("c"-"b")adot

If in a right angled triangle, a a n d b are the lengths of sides and c is the length of hypotenuse and c-b!=1, c+b!=1 , then show that (log)_("c"+"b")"a"+(log)_("c"-"b")"a"=2(log)_("c"+"b")adot(log)_("c"-"b")adot

If in a right angled triangle, a\ a n d\ b are the lengths of sides and c is the length of hypotenuse and c-b!=1,\ c+b!=1 , then show that (log)_("c"+"b")"a"+(log)_("c"-"b")"a"=2(log)_("c"+"b")adot(log)_("c"-"b")adot

If in a right angled triangle, a\ a n d\ b are the lengths of sides and c is the length of hypotenuse and c-b!=1,\ c+b!=1 , then show that (log)_("c"+"b")"a"+(log)_("c"-"b")=2(log)_("c"+"b")adot(log)_("c"-"b")adot

Prove that 1/(log_(a/b) x)+1/(log_(b/c) x)+1/(log_(c/a) x)=0

If a > 0, c > 0, b = sqrt(ac), ac != 1 and N > 0 , then prove that (log_(a)N)/(log_(c )N) = (log_(a)N - log_(b)N)/(log_(b)N - log_(c )N) .

In a right-angled triangle, a and b are the lengths of sides and c is the length of hypotenuse such that c-b ne1,c+b ne 1 . Show that "log"_(c+b)a+"log"_(c-b)a=2"log"_(c+b)a."log_(c-b)a

If y^(2)=xz and a^(x)=b^(y)=c^(z), then prove that (log)_(a)b=(log)_(b)c

( Prove that )/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c)=1

Prove that "log"_(a^(2))a " log"_(b^(2)) b" log_(c^(2))c = (1)/(8) .