Home
Class 12
MATHS
Period of the function f(x) = cos(cospix...

Period of the function `f(x) = cos(cospix) +e^({4x})`, where `{.}` denotes the fractional part of x, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is a. 1 " " b. 2 c. 3 " " d. none of these

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of the function f(x)=cos2pi{2x}-sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {x} denotes the fractional part of x) is