Home
Class 9
MATHS
" 3."f(x)=2x^(4)-6x^(3)+2x^(2)-x+2,g(x)=...

" 3."f(x)=2x^(4)-6x^(3)+2x^(2)-x+2,g(x)=x+2

Promotional Banner

Similar Questions

Explore conceptually related problems

" 2" f(x)=4x^(4)-3x^(3)-2x^(2)+x-7,g(x)=x-1

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

f(x)=4x^(3)-12x^(2)+14x-3,g(x)=2x-1

Find the remainder when the polynomial f(x)=2x^(4)-6x^(3)+2x^(2)-x+2 is divided by x+2

Without actual division, show that f(x) = 2x^(4) - 6x^(3) + 3x^(2) + 3x - 2 is exactly divisible by x^(2)- 3x + 2 .

f(x)=2x^(3)-9x^(2)+x+12,g(x)=3-2x

f(x)=x^(3)-6x^(2)+2x-4,g(x)=1-2x

f(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2)-3x+2

Let f(x) = log_(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2) - 2x + 1) Then , the domain of fog (x) is

Let f(x)=ln x&g(x)=(x^(4)-x^(3)+3x^(2)-2x+2)/(2x^(2)-2x+3) The domain of f(g(x)) is-