Home
Class 12
MATHS
Find x, log2 2+log3 2+log4 2=logx 83...

Find x, `log_2 2+log_3 2+log_4 2=log_x 83`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_2 [log_3(log_2 x)]=1

Find x, if log x^(3) - log 3x =2 log 2 + log 3 ,

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

Solve for x, y , z . log_2 x + log_4 y + log_4 z =2 log_3 y + log_9 z + log_9 x =2 log_4 z + log_16 x + log_16 y =2

A denotes the product xyz where x,y and z satisfy log_3 x= log5-log7 and log_5 y=log7-log 3 and log_7 z=log 3-log5 B denotes the sum of square of solution of the equation, log_2(log_2 x^6 - 3) - log_2(log_2 x^4 - 5) = log_2 3 C denotes characterstio of logarithm log_2 (log_2 3)-log_2 (log_4 3)+log_2(log_4 5)-log_2(log_6 5)+log_2 (log_6 7)-log_2 (log_6 3) The valuo of A+B+C is equal to

Find x, if : 2 + log x = log 45 - log 2 + log 16 - 2 log 3.

If log_2 (log_3 (log_4 x))= 0, log_4 (log_3 (log_2 y))= 0 and log_3(log_4 (log_2z ))= 0, then the correct option is

Find x if 2 log 5 + (1)/(2) log 9 - log 3 = log x