Home
Class 12
MATHS
[" 41."int(n)^(n+1)f(x)dx=n^(2)+n" then ...

[" 41."int_(n)^(n+1)f(x)dx=n^(2)+n" then "int_(-1)^(1)f(x)dx=],[[" 1) "0," 2) "-2]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

If for every ineger n , int_(n)^(n+1) f(x) dx=n^(2) then the value of int_(-2)^(4) f(x)dx=

If int_(n)^(n+1)f(x)dx = n^(2) , where n is an integer, then int_(-2)^(4)f(x)dx=

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

f(x) is a continuous function for all real values of x and satisfies int_(n+1)^(n+1)f(x)dx=(n^(2))/(2)AA n in I. Then int_(5)^(5)f(|x|)dx is equal to (19)/(2) (b) (35)/(2) (c) (17)/(2) (d) none of these

suppose for every integer n, int_n^(n+1)f(x)dx=n^2 then the value of int_(-2)^4 f(x)dx is