Home
Class 12
MATHS
If (x^2 -x+1) is a factor of f(x) = ax^3...

If `(x^2 -x+1)` is a factor of `f(x) = ax^3 + bx^2 + cx + d` where `a !=0` and `a,b,c,d` are real, then the real root of `f(x) = 0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)-1 is a factor of ax^(3)+bx^(2)+cx+d show that a+c=0

if x^2+x+1 is a factor of ax^3+bx^2+cx+d then the real root of ax^3+bx^2+cx+d=0 is :

If (x-1)^(2) is a factor of ax^(3) +bx^(2) +c then roots of the equation cx^(3) +bx +a=0 may be

If (x-1)^(2) is a factor of ax^(3) +bx^(2) +c then roots of the equation cx^(3) +bx +a=0 may be

If f(x)=x^3+bx^2+cx+d and 0< b^2 < c , then

If f(x)=x^3+bx^2+cx+d and 0< b^2 < c , then