Home
Class 14
MATHS
p-2q-p^(2)+4q^(2)...

p-2q-p^(2)+4q^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If the difference of the roots of x^(2)-px+q=0 is unity,then p^(2)+4q=1b .p^(2)-4q=1c*p^(2)+4q^(2)=(1+2q)^(2)d4p^(2)+q^(2)=(1+2p)^(2)

Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,2beta be the roots of the equation x^(2)-qx+r=0 , then the value of r is (1) (2)/(9)(p-q)(2q-p) (2) (2)/(9)(q-p)(2p-q) (3) (2)/(9)(q-2p)(2q-p) (4) (2)/(9)(2p-q)(2q-p)

Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,2beta be the roots of the equation x^(2)-qx+r=0 , then the value of r is (1) (2)/(9)(p-q)(2q-p) (2) (2)/(9)(q-p)(2p-q) (3) (2)/(9)(q-2p)(2q-p) (4) (2)/(9)(2p-q)(2q-p)

Sum the following infinite series (p-q) (p+q) + (1)/(2!) (p-q)(p+q) (p^(2) + q^(2))+(1)/(3!) (p-q) (p+q) (p^(4)+q^(4)+p^(2) q^(2)) + ...oo

Sum the following infinite series (p-q) (p+q) + (1)/(2!) (p-q)(p+q) (p^(2) + q^(2))+(1)/(3!) (p-q) (p+q) (p^(4)+q^(4)+p^(2) q^(2)) + ...oo

Factorise p ^(4) + q ^(4) + p ^(2) q ^(2).

2p+3q=18 and 4p^(2)+4pq-3q^(2)-36=0 then what is (2p+q) equal to?

If the difference of the roots of the equation,x^(2)+px+q=0 be unity,then (p^(2)+4q^(2)) equals to: (1+1q)^(2) b.(1-2q)^(2) c.4(p-q)^(2) d.2(p-q)^(2)

Show that the sequence (p + q)^(2), (p^(2) + q^(2)), (p-q)^(2) … is an A.P.