Home
Class 12
MATHS
(d)/(dx)log(|x|)e^(2)...

(d)/(dx)log_(|x|)e^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)log_|x|e=

d/(dx)log_|x|e=

(d)/(dx)[log_(a)x]

The differentiation of log_(a)x(a>0,a)*!=1 with respect to x is (1)/(x log_(a)a) i.e.(d)/(dx)(log_(a)x)=(1)/(x log_(a)a)

if (d)/(dx)(log_(e)x)=(1)/(x) then (d)/(dx)(log_(10)x)

If (d)/(dx)(log_(e)x)=(1)/(x) then (d)/(dx)(log_(10)x)=

(d)/(dx){log_(e)(ax)^(x)}

(d)/(dx) (log_(5) x^(2)) = ……..

(d)/(dx)[log_(e)e^(sin(x^(2)))] is equal to

(d)/(dx)[log_(e)e^(sin(x^(2)))]= ......