Home
Class 10
MATHS
" 11) "cosec^(2)(90-0)-tan^(2)theta=cos^...

" 11) "cosec^(2)(90-0)-tan^(2)theta=cos^(2)(90-theta)+cos^(2)theta

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that :(sin theta cos(90^(0)-theta)cos theta)/(sin(90^(0)-theta))+(cos theta sin(90^(0)-theta)sin theta)/(cos(90^(@)-theta))=1csc^(2)(90^(@)-theta)-tan^(2)theta=cos^(2)(90^(@)-theta)+cos^(2)theta

tan^(2)(90^(@) - theta) - cosec^(2) theta =

tan^(2)(90^(@) - theta) - cosec^(2) theta =

What is the value of [tan^(2)(90-theta)-sin^(2)(90-theta)]cosec^(2)(90-theta)cot^(2)(90-theta) ?

(sec^(2)theta-sin^(2)theta)/(tan^(2)theta)=cosec^(2)theta-cos^(2)theta

tan^(2)theta-tan^(2)(90^(@)-theta)=(sin^(2)theta-cos^(2)theta)/(sin^(2)theta cos^(2)theta)

(tan^(2)theta)/(tan^(2)theta-1)+(cosec^(2)theta)/(sec^(2)theta-cosec^(2)theta)=(1)/(sin^(2)theta-cos^(2)theta)

If l cos^(2) theta + m sin^(2) theta = (cos^(2) theta ("cosec"^(2) theta+1)/("cosec"^(2) theta -1)) then what is the value of tan^(2) theta .

Prove the Identity (tan^(2)theta)/(tan^(2)theta-1)+(cosec^(2)theta)/(sec^(2)theta-cosec^(2)theta)=(1)/(sin^(2)theta-cos^(2)theta)

Prove that : (cot(90^(@)-theta))/(tantheta)+("cosec"(90^(@)-theta)sintheta)/(tan(90^(@)-theta))=sec^(2)theta