Home
Class 12
MATHS
" (i) "tan{(2n+1)pi+8)+tan{(2n+1)pi-6}=0...

" (i) "tan{(2n+1)pi+8)+tan{(2n+1)pi-6}=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that tan{(2n+1)pi+theta}+tan{(2n+1)pi-theta}=0

Show that tan{(2n+1)pi+theta}+tan{(2n+1)pi-theta}=0

If n is an integer, prove that, (ii) tan{(n pi)/2 + (-1)^(n) pi/4} = 1

lim_ (n rarr oo) (1) / (n) [tan ((pi) / (4n)) + tan ((2 pi) / (4n)) + ... tan ((n pi) / (4n) )]

sum_(r=1)^(n) tan^(-1)(2^(r-1)/(1+2^(2r-1))) is equal to a) tan^(-1)(2^n) b) tan^(-1)(2)^n-pi/4 c) tan^(-1)(2^(n+1)) d) tan^(-1)(2^(n+1))-pi/4

The general solution of the equation tan2theta* tantheta = 1 for n in I, theta is equal to (i) (2n+1)pi/4 (ii)npi+-pi/6 (iii)(2n+1)pi/2 (iv) (2n+1)pi/3

Evaluate : underset(n to oo)lim(1)/(n)["tan"(pi)/(4n)+"tan"(2pi)/(4n)+"tan"(3pi)/(4n)+…+ "tan"(npi)/(4n)]

The value of (1+tan(3 pi)/(8)*tan(pi)/(8))+(1+tan(5 pi)/(8)*tan(3 pi)/(8))+ (1+tan(7 pi)/(8)*tan(5 pi)/(8))+(1+tan(9 pi)/(8)*tan(7 pi)/(8))