Home
Class 12
MATHS
" If "a,b,x,y" are positive natural numb...

" If "a,b,x,y" are positive natural numbers such that "(1)/(x)+(1)/(y)=1" and "(a^(x))/(x)+(b^(y))/(y)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

if a,b x,y are positive natural number such that (1)/(x)+(1)/(y)=1 then (a^(x))/(x)+(a^(y))/(y)=

If a, b, x, y are positive natural numbers such that (1)/(x) + (1)/(y) = 1 then prove that (a^(x))/(x) + (b^(y))/(y) ge ab .

If a, b, x, y are positive natural numbers such that (1)/(x) + (1)/(y) = 1 then prove that (a^(x))/(x) + (b^(y))/(y) ge ab .

If a, b, x, y are positive natural numbers such that (1)/(x) + (1)/(y) = 1 then prove that (a^(x))/(x) + (b^(y))/(y) ge ab .

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

Let x and y be two positive real numbers such that x+y= 1 . Then the minimum value of (1)/(x) + (1)/(y) is

If x,y,z are positive real numbers, prove that: sqrt(x^-1 y).sqrt(y^-1z).sqrt(z^(-1)x)=1

If x and y are real then the number of ordered pairs (x,y) such that x+y+(x)/(y)=(1)/(2) and (x+y)(x)/(y)=-(1)/(2) is