Home
Class 12
MATHS
y=(e^(x)+e^(-x))/(e^(x)-e^(-x))...

y=(e^(x)+e^(-x))/(e^(x)-e^(-x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate (e^(x)+e^(-x))/(e^(x)-e^(-x))

Integrate the functions (e^(x)-e^(-x))/(e^(x)+e^(-x))

The inverse of the function y=(e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)) is/an

If A(x)={:[(e^(x),e^(x)),(e^(-x),e^(-x))]:} then A(x) A(y)=

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If x=(e^(y)-e^(-y))/(e^(y)+e^(-y)) show that y=1/2log_(e )((1+x)/(1-x))

(dy)/(dx) =y ((e^(3x)-e^(-3x))/(e^(3x) +e^(-3x)))

(e^x+e^(-x)) d y-(e^x-e^(-x)) d x=0