Home
Class 12
MATHS
tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1+xy...

tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1+xy))" holds true for "

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."

The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."

The result tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) is true when value of xy is _____

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

If x,y are real numbers such that xy<1 then tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1