Home
Class 8
MATHS
" (19)."mx-ny=m^(2)+n^(2)...

" (19)."mx-ny=m^(2)+n^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x and y : mx- ny = m^(2) + n^(2) " " x - y = 2n

Solve the following system of equations by method of cross-multiplication: mx-ny=m^(2)+n^(2),quad x+y=2m

solve the following pair using cross multiplication method mx+ny=m^(2)+n^(2) and x+y=2m

Select a suitable identity and find the following products (mx^(2) + ny^(2))(mx^(2) + ny^(2))

if sin^(2)mx+cos^(2)ny=a^(2) then (dy)/(dx)

If sin ^(2) mx + cos ^(2) ny = a ^(2) then (dy)/(dx) =

The coordinates of the point which divides the line segment joining the points (x_(1);y_(1)) and (x_(2);y_(2)) internally in the ratio m:n are given by (x=(mx_(2)+nx_(1))/(m+n);y=(my_(2)+ny_(1))/(m+n))

If the roots of lx^(2)+2mx+n=0 are real and distinct then the roots of (l+n)(lx^(2)+2mx+n)=2(ln-m^(2))(x^(2)+1) will be

Prove : int sin mx sin n x dx[ m^(2) != n^(2)] , = 1/2 [ (sin(m-n)x)/(m-n) - (sin (m+n)x)/(m+n) ] + c

3mx^(2)-8n^(2)y+(-4mx^(2))-n^(2)y=